The Hunter-Saxton System and the Geodesics on a Pseudosphere
نویسندگان
چکیده
منابع مشابه
The Hunter-Saxton Equation: A Geometric Approach
The Hunter–Saxton equation is the Euler equation for the geodesic flow on the quotient space of the infinite-dimensional group of orientation preserving diffeomorphisms of the unit circle modulo the subgroup of rigid rotations equipped with a right-invariant metric. We establish several properties of this quotient space: it has constant sectional curvature equal to 1, the Riemannian exponential...
متن کاملa study on construction of iranian life tables: the case study of modified brass logit system
چکیده ندارد.
15 صفحه اولGlobal Solutions of the Hunter-Saxton Equation
We construct a continuous semigroup of weak, dissipative solutions to a nonlinear partial differential equations modeling nematic liquid crystals. A new distance functional, determined by a problem of optimal transportation, yields sharp estimates on the continuity of solutions with respect to the initial data. 1 Introduction In this paper we investigate the Cauchy problem
متن کاملLipschitz Metric for the Hunter–saxton Equation
We study stability of solutions of the Cauchy problem for the Hunter–Saxton equation ut + uux = 14 ( R x −∞ u 2 x dx− R∞ x ux dx) with initial data u0. In particular, we derive a new Lipschitz metric dD with the property that for two solutions u and v of the equation we have dD(u(t), v(t)) ≤ edD(u0, v0).
متن کاملConvergent difference schemes for the Hunter-Saxton equation
We propose and analyze several finite difference schemes for the Hunter–Saxton equation (HS) ut + uux = 1 2 ∫ x 0 (ux) 2 dx, x > 0, t > 0. This equation has been suggested as a simple model for nematic liquid crystals. We prove that the numerical approximations converge to the unique dissipative solution of (HS), as identified by Zhang and Zheng. A main aspect of the analysis, in addition to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2013
ISSN: 0360-5302,1532-4133
DOI: 10.1080/03605302.2013.771660