The Hunter-Saxton System and the Geodesics on a Pseudosphere

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hunter-Saxton Equation: A Geometric Approach

The Hunter–Saxton equation is the Euler equation for the geodesic flow on the quotient space of the infinite-dimensional group of orientation preserving diffeomorphisms of the unit circle modulo the subgroup of rigid rotations equipped with a right-invariant metric. We establish several properties of this quotient space: it has constant sectional curvature equal to 1, the Riemannian exponential...

متن کامل

Global Solutions of the Hunter-Saxton Equation

We construct a continuous semigroup of weak, dissipative solutions to a nonlinear partial differential equations modeling nematic liquid crystals. A new distance functional, determined by a problem of optimal transportation, yields sharp estimates on the continuity of solutions with respect to the initial data. 1 Introduction In this paper we investigate the Cauchy problem

متن کامل

Lipschitz Metric for the Hunter–saxton Equation

We study stability of solutions of the Cauchy problem for the Hunter–Saxton equation ut + uux = 14 ( R x −∞ u 2 x dx− R∞ x ux dx) with initial data u0. In particular, we derive a new Lipschitz metric dD with the property that for two solutions u and v of the equation we have dD(u(t), v(t)) ≤ edD(u0, v0).

متن کامل

Convergent difference schemes for the Hunter-Saxton equation

We propose and analyze several finite difference schemes for the Hunter–Saxton equation (HS) ut + uux = 1 2 ∫ x 0 (ux) 2 dx, x > 0, t > 0. This equation has been suggested as a simple model for nematic liquid crystals. We prove that the numerical approximations converge to the unique dissipative solution of (HS), as identified by Zhang and Zheng. A main aspect of the analysis, in addition to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Partial Differential Equations

سال: 2013

ISSN: 0360-5302,1532-4133

DOI: 10.1080/03605302.2013.771660